Driverless Electric Cars as a Service – One Adoption Scenario


Self-driving Uber vehicles are lined up to take journalists on rides during a media preview at the company’s Advanced Technologies Center in Pittsburgh earlier this month.

As I ponder the changes that driverless cars will cause across our societies, one of the difficulties is trying to understand what the speed of adoption might be. That is because speed of adoption has huge consequences on the levels of disruption that will occur. The speed of adoption linked into all sorts of factors including:

  • Production bottlenecks in the supply chain such as raw materials, and battery supply.
  • Production capacity for manufacturing of electric driverless cars.
  • Technical issues in achieving true Level 5 automation (think no steering wheel).
  • Political and legal issues around liability and insurance.
  • The balance between the numbers of cars in personal ownership, and the number owned by big companies providing transport services (think Uber/Lyft/Didi and new entrants like Waymo).


In turn these factors will be affected by the business models and strategic thinking of the major players. This includes car manufacturers, car ride companies, and governments.
The competition is going to be brutal. Existing car companies will be going up against each other, and new competitors. The new competitors include car ride sharing companies, and new car manufacturers.

Some of the major problems in implementing driverless electric cars as a transport service can be largely solved by car ride companies. The problems include the following:

The Initial Scale/Network Problem

The problem if you want to offer transport as service is you have to get to scale before customers will even contemplate using your service. You cannot put 100 cars on the road and say here I am. This is like the network problem of the first fax machine but on a much larger scale. Who buys the first fax machine? You might buy half a dozen of them so you can communicate between distant offices of the same company. The real value comes when it is a standard system adopted by many people. The problem with transport as a service is that it is much larger. The reality is that people will not use your service until they can consistently get a car in a reasonable time frame to take them wherever they want to go. That needs massive scale and is the reason why Uber was so aggressive in recruiting drivers in target cities. They needed a critical mass to drive customer demand.
A new entrant with electric driverless cars can provide this service but they will need a lot of cars. If you need 100,000 vehicles at peak time in Melbourne (where I live) to supply that service it requires a lot of capital. If the cars cost $50,000 each it is going to cost you $5 billion just for the cars.  That is apart from the costs of the platform to run the system, plus the initial trading losses that will be incurred before breaking even. Not many organisations will have that sort of money, and that might just be for one city. Waymo or Apple might be an exception given the masses of cash that they have. The existing car ride companies got around this problem by using other people’s cars. Difficult to do that for driverless cars although we will explore a model for that in a later post.
The existing car ride companies (Didi, Lyft, Uber, etc) are already at the scale needed to supply the services for their existing customer base. Adding driverless electric cars into that service is somewhat analogous to the electricity grid. Once the standard utility service is in place (think poles, wires, plugs and standards for electricity, and roads and traffic systems for cars) you can make additions as long as they fit the system. You can add a new coal generating plant, or a new gas plant, or new solar capacity and power comes out at the socket. My desk lamp does not care how the power was generated. In the case of a car ride service as long as the customers accept a driverless car you can put that into your system alongside your existing fleet. You may need to drive (sic) demand by offering discounts for the driverless vehicle to get people past their first stages of discomfort. In my case the safety factor is likely to be the key initial driver for change but I am an outlier.

The Capital Problem

If you are a company that wants to supply transport as a service you will want to scale as fast as you can. Ideally you will offer a service in 50 cities in the first 3 – 5 years. If we assume that takes 100,000 vehicles in each city and each car costs $50,000 you now have a cost of $250 billion. If you add in technology platform costs , and initial losses you might have to find $350 billion. That is a lot of coin in anyone’s language. Even if the required vehicle numbers are much lower it is still going to be a massive capital investment.
Even if you don’t move that fast you will have to make large bets in the target cities where you first invest.
If you are a car ride company you can scale by steadily adding cars to your existing services in all those cities. That should have the effect of reducing your costs, and improving your bottom line at a much slower capital burn rate. You can also play a much more agile strategic game. If you perceive a threat in a particular market you can scale faster in that market and slower in other markets. If adoption rates are faster in one city you can rapidly scale up volume in that city by slowing each of your other markets just a little.

The Technical Problem

The technical problem is getting to level 5 automation as soon as possible. Level 5 automation is when there is no driver required in any location or conditions. Any driverless car company will have to convince the regulatory authorities of safety at level 5.  The existing ride companies have an advantage here. They already have masses of data on the travel their existing cars undertake. They can also start with say 100 driverless vehicles within their existing service. That will consist of testing them in real conditions with paid drivers in the vehicles. While a lot of advances in driverless car systems are being made using computer simulations nothing fully substitutes for real world data. Especially for politicians and for regulatory authorities.  That real world data can then be fed back into simulation systems to gain an advantage in simulation programs

Existing car ride companies are the most likely path to adoption of driverless electric cars. These types of cars provide significant reductions in the cost structures for car ride services. This means that if they sit on their hands someone will come along and blow their existing services out of the water. The car ride companies have the competitive imperative to go down this path. They also have some significant competitive advantages in executing the strategy. That does not mean they will be successful, just that they have a head start.

In our next post we will take a closer look at some of the players, and the tactics that might be involved.

I am writing a book on autonomous vehicles with Dr Chris Rice from Texas. It is called Rise of the Autobots: How Driverless Vehicles will Transform our Economies and our Communities. Stay tuned for more excerpts as we finalise the book.

Note: Featured image is from NPR




The Supermarkets Demise – A Scenario

Back in November I wrote a post entitled: Are The Two Major Supermarkets in Australia Doomed?

If you are at all involved in the retail food chain I suggest you go and read it in full. The short answer is yes, but it will be a slow train crash.

A story in MIT Technology Review last week illustrates one of the possible models that can replace the supermarket model of today:

Autonomous Grocery Vans Are Making Deliveries in London


Of course supermarkets will be trying to incorporate such systems into their business model as well but my view is that because of their underlying legacy systems they will find the transition close to impossible.

The story is about a quite limited trial but it points towards a possible future:

“On the back of the vehicle are eight pods, each with a crate that can hold three bags of groceries. The van is filled by human hands from a small distribution center—in this case, a larger Ocado van, which stores 80 of those crates—and sets off following a route to its drop-offs, which is broadly planned in the cloud but ultimately executed by the vehicle. When it arrives at an address, the customer is alerted via smartphone and must press a button on the vehicle to open a pod door and grab the groceries.”

In terms of the final use case:

“Clarke imagines vehicles like these being used to provide on-demand delivery of groceries from a small nearby distribution hub, so that instead of booking a delivery slot customers hail their groceries—when they arrive home from work, say, even if it’s late at night.”

This ties in with an interesting analysis of the IPO for Blue Apron, the food company which delivers meal recipes and the main ingredients for those meals to your door. In that analysis in the New York Times, chef Amanda Cohen theorised that the Blue Apron model may destroy itself. She describes the fact (which went against her initial view) that many people she has spoken to said that the Blue Apron process had given them the confidence to cook more. If she is correct then this means that Blue Apron is training its customers not to need it any more, not a great business model as it means lifetime value of a customer may be severely limited.

The combination of these stories may point to a completely different future. As Amanda Cohen says:

‘” In Hong Kong, many people swing by a “wet market” on their way home from work and pick up the vegetables, fish or beef they’re going to eat that night. Same thing in France, Latin America, South Korea or pretty much everywhere people don’t load up their giant S.U.V.s with giant quantities of groceries to store in their giant fridges once a week. The meal kit model of keeping some staples in the cupboard and getting the fresh stuff as you need it is the market way of doing things”

One of the major problems with food delivery systems and in particular with automated delivery systems is what do you do with the fresh stuff because timeliness and the refrigeration process really matters. This is exacerbated by the fact that people are home at different times of the day or night and cannot necessarily take delivery when the delivery system wants to deliver . Various ways of solving this have been proposed including smart delivery lockers in apartment buildings or the local post office, etc. I can see that models emerging where all of the non-fresh goods can be delivered by an automated delivery system from a small local storage facility where you request delivery when you are home, just like you do when requesting an Uber right now. There may even be discounts for people who take quick delivery so storage space is always available, or people who will take a shared delivery and therefore will wait longer.

If this is part of a wider adoption of driverless cars then it can be part of a larger change. Driverless cars do not need to park, or at least do not need to park in busy or congested areas. I am an advocate for a driverless car adoption model where government or privately owned fleets provide transport as a service and surpasses the personal vehicle ownership model that has dominated the last hundred years. Even if that does not come true individual owners can hire out their driverless car when they are not using it so it does not have to be parked in front of the house or the office, or at the train station.

I I imagine a changed urban environment where mass adoption of autonomous vehicles changes the urban landscape by freeing up parking areas on streets and parking facilities . The freed up space on streets creates the capacity for more foot traffic, and increases in safe bike lanes while, driverless vehicles increase the capacity for people to travel for short trips locally. The parking facilities can be repurposed for storage and/or specialty markets for fresh products.
In that changed local environment we could see a model where large scale supermarkets are no longer the norm, where specialty fresh food stores spring up everywhere within easy travel distance of people’s homes. These specialty stores would be powered by the back end logistics that Amazon creates for Whole Foods, or their competitors (go read Ben Thompson’s excellent post: AMAZON’S NEW CUSTOMER for more details on their strategy) You would pick up your fresh product and speciality items on your way home from work or by a short walk or bike ride, or driverless car ride to the local store. Automated vehicles would deliver the staples to your door on request using pre planned orders or automated ordering systems like the Amazon Dash Wand.

In many areas this could revive the concept of neighbourhoods that really work in urban environments.

There are many ways the supermarket model will be attacked in the future. This is just one possible scenario. Given the pace of driverless car adoption and capacity for the car industry to deliver the full model is still a fair way off. The automated delivery system is not so far off. It fits the four level of automated driving systems by being in a geofenced area (local delivery only from a small storage/transfer facility), and carried out at low speed to reduce the risk of accidents. Full level 5 driving automation where vehicles can go anywhere in all conditions and no driver actions required are a lot further off. That does not mean there will not be continuing experiments with automated food delivery systems.

As Ben Thompson states in his article groceries are about 20% of consumer spending (USA). That is a big prize and lots of people are going to be going after it. Long term an automated vehicle delivery system will be a part of that. How big a part, and in what form remains to be seen.


I am writing a book on the adoption of driverless cars with Chris Rice entitled Rise of the Autobots: How driverless vehicles will transform our societies and our economies. Follow me here or on Twitter for more updates as we write and publish.

Paul Higgins




Strategy, Digital, and Governance

Estelle Metayer (@competia) who I greatly respect as a futurist and governance expert tweeted out today this article:

Digital directors in industrial boardrooms

The thrust of the article is that digital strategy is so important these days that having a “digital director” is crucial to board room governance and strategy.

There is no doubting the importance of digital technologies in the current environment and for a more comprehensive take on this I recommend you read:

Which Productivity Puzzle?

by Bill Janeway. It is a great discussion around an issue that is getting lots of airplay (is that a thing any more?) – the question of why we are not seeing greater productivity increases from the adoption of digital technologies. The last part of the post looks at some of the data that clearly shows that productivity is increasing much faster than the average in “digital leaders”. Given that productivity is a key driver of profitability and general economic growth it seems obvious that successful digital strategy is a key component of the future of nearly every business.

If we take that as a given then we come to the question of whether there should be a digital director. My view is that you cannot have every technical/strategic/financial/legal capacity on a board or board size becomes unmanageable. In my experience big strategic failures arise when strategy is driven by technology adoption rather than being customer driven.  Also on boards where I have been a director I have seen too many times a board abrogate its responsibilities by deferring to the expert on a particular issue. Rather than taking an open and questioning approach boards will turn to the legal director or the risk expert and follow their view. This reduces the collective intelligence that is brought to bear on the issue.

My concern is that if there is a digital director then strategy around digital technologies will be driven by the views of that person.  I want the following things to be uppermost in the mix of skills on a board:

  1. Enough industry experience – so that the board is not naive.
  2. Enough outside the industry experience – so that the board is not captured by the thinking in that industry.
  3. A mix of males and female (see my comment on the Uber board around this )
  4. A large focus on customers.
  5. Strong strategic minds with  the capacity to question strategy proposed by management.

If you are able to get all of those things then I do not see the room for a director with specific (and probably narrow) digital expertise.

I am particularly taken by the view expressed in:

What a digital organisation looks like

by Janet Hughes, who views a digital organisation as essentially an organisation wide attitude to become open, responsive, and efficient. A single person that is deferred too cannot achieve that as Janet eloquently represents in her image:

digital super hero from Janet Hughes on Medium what does a digital organisation look like

Paul Higgins