Sell Your Crash Repair Business Now*

*this should not be taken as financial or business advice. If you own a crash repair business please take professional advice before making any decisions.

I am just going through the process of getting some minor damage repaired on our car and have been ruminating on the future of the insurance and repair model when we have driverless (autonomous) cars. This was also prompted by a couple of stories in The Age here in Melbourne:

Crash repair: How Ray Malone became head of ASX-listed company AMA Group

and

Driverless vehicles technology to roll out on the Tulla under trial

 

The first story describes how Ray Malone has built a Australia’s largest crash repair business, and is aiming to grow it even further. That would seem to go against the title of this post but it actually feeds into my thinking because Ray’s company provides wholesale service aftercare which will be vital in the scenario I am describing.

The second story is about how trials of driverless cars are starting here in Melbourne. This follows a large number of trials that are being conducted in various countries around the world.

Once we move to a reasonably widespread adoption of autonomous/driverless cars the local crash repair business will basically disappear except for a few large operators like Ray Malone but even his business could be under threat . The key reasons for this are:

1/ It has been forecast that autonomous cars will significantly reduce the number of car accidents that occur. This is based largely on the statistics that human error causes more than 90% of traffic crashes. So if we can eliminate the crashes caused by idiots, people under the influence of drugs and alcohol, and people driving tired or angry (Police looked into the deaths of 86 people on Victorian roads last year and found that in more than 10 per cent of cases the driver had experienced a traumatic or upsetting event.) we can significantly reduce the number of accidents.

Against this argument is that autonomous cars supplying a transport service may result in people travelling further and perhaps take more risks. Certainly it will allow elderly people who cannot drive, and young people who do not have a licence to travel in cars more than they otherwise would. There have also been arguments that because we feel safer we may take more risks as pedestrians or cyclists.  If we are conservative and say that only 50% of accidents caused by human behaviour will be eliminated we still have a significant fall in accidents.

2/ It is highly likely that we will see large fleet models emerge where large numbers of people choose not to own a vehicle. If the overall travel costs are lower than owning your own vehicle, and you can get a vehicle anytime you need one then the convenience of transport as a service outweighs the personal ownership model.  The economics for fleet owners are different than for individual owners when it comes to crash repair services. Fleet owners will want large scale service operations to reduce costs or will pay far less for the services of smaller scale operators. This feeds into a large supplier (such as Ray Malone’s company) snapping up more business. Larger scale crash repair businesses will benefit from the economies of scale that allow them to use new technologies such as robotics to increase throughput and reduce costs.

3/ The model for crash repair business location will change. Currently crash repair businesses are located in scattered locations throughout the suburbs and inner city. This is because if I want to take my car in for crash repairs there is a significant time cost for me to take my car to a location that is not near to my house or business. I have to travel to the crash repair business, and then get back to my home or place of work. So I want the crash repair business to be reasonably close. The location is mainly driven by the customer. If my personal driverless car needs crash repairs it can drive itself to the crash repair site, and a fleet service or a shared personal car service can replace my transport needs in the meantime.

If I was asked to drive my car (actual damage pictured below) to a service centre 40 km away I would not be very happy, but if my car can take itself then location becomes much less important and the costs of the business become far more important. Locating the crash repair business in areas of lower property costs with good transport links makes far more sense. It also means that the employees of the business will have lower property costs if they live locally. We already see this model in light manufacturing and food processing/handling facilities locating around hubs on ring roads, away from  inner suburbs with high property prices.

If a fleet ownership model predominates over personal ownership this effect will be even higher as large scale fleets look for cost reductions through economies of scale.

corolla damage 1

 

So if we summarise all the factors together if we assume a 45% reduction in total accidents (50% of human error crashes) and a tripling of scale that comes from the changes described above we get an 82% reduction in the number of crash repair businesses in any city.  I believe that the changes in scale may be even higher and we may end up with only 5-10% of the number of current crash repair businesses being economically viable.

If I own a crash repair business in any suburb in any of our major cities I will come under pressure from a high scale panel beater business set up on the fringes of the city with lower property costs.

So, if you are a crash repair business:

  1. Assess whether now is a good time to sell to someone else who does not understand these changes.
  2. If you think I am wrong then you should suspend that thought for just a few minutes and  think about what it means to your business and your assets if I am right. Even if you think that chance is only 5% you should set up a series of questions for yourself to monitor in coming years so that you can change your mind if the changes start to happen. Those questions include:
  • Is the practical outcome of accident reduction matching the rhetoric of the technology experts and the modellers? Look for signs of early change, cities where adoption is at the forefront of the change and make an assessment as to whether the predictions on accident reduction are true (or even going to be exceeded) and then think about the timing of the implications.
  • Look for areas or cities where the first full scale mass adoption of driverless cars might take place. For example Singapore, with a small land mass, and a relatively authoritarian government might be one. This will give you early signs of what larger scale adoption might look like.
  • Is the adoption model going to be a personal one or a mass fleet one? If the model is primarily a personal one then you should be thinking about whether you can become one of the new mega panel beaters on the fringes of the city that will survive the change. If the model looks to be a primarily mass fleet adoption one then there are less possibilities. Those fleet operators will either run their own operations which are standardised and mechanised or they will use their economies of scale to drive down margins in the businesses that supply them. You can still run a good business that way but the opportunities will be limited and will require lots of capital to create the volume throughput and economies of scale required. You will have to compete with the Ray Malone’s of this world.
  • Are any early models of very large scale, city fringe located crash repair businesses starting to emerge anywhere around the world? Are they successful?
  • Are car companies changing their business models for car repairs. For instance electric cars have far less moving parts than internal combustion cars. Does that make a difference to your business model? Are modularised car construction and repair systems emerging that will increase the capacity to adopt robotic repair and maintenance systems that will advantage large throughput car repair and maintenance systems?

While these changes may take 15 years to start to significantly impact on the crash repair business, once they become obvious the window to realise the business value by sale will quickly snap shut.

This is just one of the many implications of change from the widescale adoption of driverless cars.I am writing a book on driverless vehicles with Chris Rice (@ricetopher). It is called “Rise of the Autobots: How driverless vehicles will transform our economies and our communities. Stay tuned for more writing as we develop our thinking further.

 

Paul Higgins

Electric Cars and the Legacy Issue

Chris Rice and I are currently writing a book on the rise of autonomous vehicles and their widespread effects across our economies (entitled Rise of the Autobots: How Driverless Vehicles will change our Societies and our Economies). One of the keys to looking at what these changes might mean and the rate at which they will occur is the speed of adoption speed of electric cars and autonomous vehicles combined together.

There have been lots of excited announcements about electric cars over the last few months including:

India to make every single car electric by 2030 in bid to tackle pollution that kills millions
The Electric-Car Boom Is So Real Even Oil Companies Say It’s Coming
When Will Electric Cars Go Mainstream? It May Be Sooner Than You Think

The reality is that the adoption of electric cars will have several bottlenecks including but not limited to:

  • Battery availability.
  • Production capacity for manufacturing.
  • The reluctance of people to adopt the technology until they are completely sure that the charging issues and the range issue have been adequately dealt with.
  • The long-term nature of the turnover of the vehicle fleet.

Both battery production and electric car production are ramping up but the last point is very important when we start looking at the critical mass needed to disrupt a range of industries, including petrol stations and their supply chains, maintenance and repair systems, and the electric power grid. Even when it becomes a sensible economic decision to purchase a new electric car over an internal combustion engine (ICE) powered car, someone with a 7 year old vehicle is not going to immediately changeover. This is both due to the capital nature of the change and the fact that if electric cars are more economical than ICE cars the resale value of second hand ICE cars will fall dramatically, reducing the interest and capacity of people to purchase a new vehicle (if purchase is the model). This will be exacerbated if the new electric vehicles also have significant advantages in autonomy.

To illustrate this issue we took a look at the vehicle fleet in New South Wales in Australia If we look at the statistics at the end of the fourth quarter in 2016 it gives us a snapshot of the vehicle legacy issue. The following graph shows the year of manufacture for light vehicles registered in NSW at the end of 2016. The majority are passenger vehicles:

light vehicle registrations in NSW 2016 Q4

Source: http://www.rms.nsw.gov.au/about/corporate-publications/statistics/registrationandlicensing/tables/table113_2016q4.html  – accessed July 24th 2017

While the 2016 manufactured vehicles are under-represented in this graph as many 2016 vehicles are registered in 2017, it nevertheless gives a clear picture of the ownership structure of light vehicles. If we look deeper in the data we see that 20.1% of the registered light vehicles are manufactured prior to 2001.

If we look at heavy vehicles we get a similar picture albeit with different percentages:

heavy vehicle registrations in NSW 2016 Q4

There are some differences in the data between light and heavy vehicles:

  • The first is that there are significantly more 2007 heavy vehicles registered than any other year. This probably relates to GFC issues.
  • The second is that the heavy vehicle curve is lower than the light vehicle curve. This probably reflects a pattern of use where heavy vehicles are sold into a secondary market that will discount vehicles significantly if the economic model is significantly different than the new vehicle one, extending the useful economic life of the vehicles. This means that the percentage of total registered heavy vehicles prior to 2001 is 34.2%, much higher than light vehicles.
  • The third is that there are many more vintage models in the light vehicle category, reflecting the motoring enthusiast and restoration market. So there are 3,379 registered light vehicles manufactured 1900-1949, but only 21 heavy vehicles for the same period.

A very simplistic look at this data says that even if every vehicle sold new in Australia was electric from say 2025 was an electric car, and the purchase patterns remained stable after 5 years we would have between 31% and 40% electric light vehicles on the road and in 10 years it would be somewhere between 50 and 60%. This pattern is highly unlikely and so the real adoption rates will be well short of that. Every year that the purchase pattern is 50% electric and 50% ICE will slow the transition as those ICE cars will be on the road for a long time.

This adoption cycle is complicated by our view that increasing automation will result in more fleet ownership models, and shared car rides, reducing the total sales of new vehicles. While this means that battery and electric car manufacturing do not have to ramp up as much to get to 100% of new sales it changes the adoption curve.

Now both those simplistic analyses assume the normal pattern of car purchases and ownership will remain in place. That is also unrealistic. All we do know is that the adoption rates will be relatively slow because of the legacy issues and the turnover of the vehicle fleet as a whole. Cars are not smartphones. We will be doing some more modelling on the possible scenarios over the next few weeks. Follow us here if you want to see them and help us think through the changes.

 

Featured Image is from :

Top 8 Secrets for Competitive Electric cars-Tips for Auto Manufacturers by Ameen Shageer

 

 

What Jobs Will Stay?

This week I had two very different experiences which had me thinking about the future of jobs. On Tuesday I was invited to a workshop host by Perpetual Trustees with the Stanford Centre for Philanthropy and Civil Society. I was there isn my role as a futurist and a venture philanthropist (I am a partner at Social Venture Partners Melbourne  See :  Summary Video). The subject for the session was Digital Technologies and Democratic Theory and involved a range of not for profit organisations, commercial businesses, and startups.

A lot of the discussion was on the effects of technology on our wider society, and our political systems in particular. Rob Reich and Lucy Bernholz from Stanford took the temperature of the room on whether we are optimists or pessimists about the effects and capabilities of technology. I was surprised by the fact that the overwhelming majority of the room was optimistic. I placed myself as pessimistic. I think that there is a lot to like about the capabilities of technology to connect people together, and for people to take action. I just think that the reality is a little more sobering, and that the effects of technology on our wider societies, in particular the future of work, will outpace the capacity of the technologies to bend the overall direction to the benefit of all.

While I am no means certain I fear a future where more jobs are eliminated than are created for the first time in our technological development. If such a change occurs it has the potential for both good and bad. The negative picture is one where more and more wealth accumulates in the hands of the few and is not distributed across the general population. That is a recipe for revolution. This is particularly troubling where public trust in our democratic institutions has fallen significantly.

driveway gate 1

My other experience is that we hired a handyman to move a gate in our driveway. For some reason I cannot understand the previous owners placed a gate part way down the driveway leaving a whole lot of unused space behind it. On top of that there are significant parking restrictions on our very steep street and so visitors have to park down the hill and walk up. This is getting to be a particularly serious issue as our parents age.

The original installation of the gate had not been particularly professional and so there were problems opening and closing the gate due to warping of the wood. When we got down to the details of the job we discovered that about 13 different types of bolts and screws had been used in the original gate installation. On top of that some were metric, and some were imperial (inches) and some seemed in between. On top of that some of the screws had been rounded out and were impossible to remove by standard methods. The problem was exacerbated by the fact that the concrete at the new position we were looking to install the gate on had three different levels.

Luckily we had hired an old time craftsman/handyman who had all the tricks and now the gate is safely installed (see picture). The dog has no chance of getting out, and our parents can now park in the driveway. Those are the sorts of jobs that are not going away in a hurry because of the levels of variation for each job. Our handyman (also Paul) says he reckons he has 20 years of work ahead of him in his semi-retirement. I think he is right and if you are concerned about the future employment of your children and they have aptitude for this sort of work (which includes plumbing) then keep encouraging them.

I realise that these two subjects are different ends of the same issue and the second one has no real bearing on the wider societal issues. I will keep trying to make a contribution to those wider issues.

 

Paul Higgins

The Supermarkets Demise – A Scenario

Back in November I wrote a post entitled: Are The Two Major Supermarkets in Australia Doomed?

If you are at all involved in the retail food chain I suggest you go and read it in full. The short answer is yes, but it will be a slow train crash.

A story in MIT Technology Review last week illustrates one of the possible models that can replace the supermarket model of today:

Autonomous Grocery Vans Are Making Deliveries in London

 

Of course supermarkets will be trying to incorporate such systems into their business model as well but my view is that because of their underlying legacy systems they will find the transition close to impossible.

The story is about a quite limited trial but it points towards a possible future:

“On the back of the vehicle are eight pods, each with a crate that can hold three bags of groceries. The van is filled by human hands from a small distribution center—in this case, a larger Ocado van, which stores 80 of those crates—and sets off following a route to its drop-offs, which is broadly planned in the cloud but ultimately executed by the vehicle. When it arrives at an address, the customer is alerted via smartphone and must press a button on the vehicle to open a pod door and grab the groceries.”

In terms of the final use case:

“Clarke imagines vehicles like these being used to provide on-demand delivery of groceries from a small nearby distribution hub, so that instead of booking a delivery slot customers hail their groceries—when they arrive home from work, say, even if it’s late at night.”

This ties in with an interesting analysis of the IPO for Blue Apron, the food company which delivers meal recipes and the main ingredients for those meals to your door. In that analysis in the New York Times, chef Amanda Cohen theorised that the Blue Apron model may destroy itself. She describes the fact (which went against her initial view) that many people she has spoken to said that the Blue Apron process had given them the confidence to cook more. If she is correct then this means that Blue Apron is training its customers not to need it any more, not a great business model as it means lifetime value of a customer may be severely limited.

The combination of these stories may point to a completely different future. As Amanda Cohen says:

‘” In Hong Kong, many people swing by a “wet market” on their way home from work and pick up the vegetables, fish or beef they’re going to eat that night. Same thing in France, Latin America, South Korea or pretty much everywhere people don’t load up their giant S.U.V.s with giant quantities of groceries to store in their giant fridges once a week. The meal kit model of keeping some staples in the cupboard and getting the fresh stuff as you need it is the market way of doing things”

One of the major problems with food delivery systems and in particular with automated delivery systems is what do you do with the fresh stuff because timeliness and the refrigeration process really matters. This is exacerbated by the fact that people are home at different times of the day or night and cannot necessarily take delivery when the delivery system wants to deliver . Various ways of solving this have been proposed including smart delivery lockers in apartment buildings or the local post office, etc. I can see that models emerging where all of the non-fresh goods can be delivered by an automated delivery system from a small local storage facility where you request delivery when you are home, just like you do when requesting an Uber right now. There may even be discounts for people who take quick delivery so storage space is always available, or people who will take a shared delivery and therefore will wait longer.

If this is part of a wider adoption of driverless cars then it can be part of a larger change. Driverless cars do not need to park, or at least do not need to park in busy or congested areas. I am an advocate for a driverless car adoption model where government or privately owned fleets provide transport as a service and surpasses the personal vehicle ownership model that has dominated the last hundred years. Even if that does not come true individual owners can hire out their driverless car when they are not using it so it does not have to be parked in front of the house or the office, or at the train station.

I I imagine a changed urban environment where mass adoption of autonomous vehicles changes the urban landscape by freeing up parking areas on streets and parking facilities . The freed up space on streets creates the capacity for more foot traffic, and increases in safe bike lanes while, driverless vehicles increase the capacity for people to travel for short trips locally. The parking facilities can be repurposed for storage and/or specialty markets for fresh products.
In that changed local environment we could see a model where large scale supermarkets are no longer the norm, where specialty fresh food stores spring up everywhere within easy travel distance of people’s homes. These specialty stores would be powered by the back end logistics that Amazon creates for Whole Foods, or their competitors (go read Ben Thompson’s excellent post: AMAZON’S NEW CUSTOMER for more details on their strategy) You would pick up your fresh product and speciality items on your way home from work or by a short walk or bike ride, or driverless car ride to the local store. Automated vehicles would deliver the staples to your door on request using pre planned orders or automated ordering systems like the Amazon Dash Wand.

In many areas this could revive the concept of neighbourhoods that really work in urban environments.

There are many ways the supermarket model will be attacked in the future. This is just one possible scenario. Given the pace of driverless car adoption and capacity for the car industry to deliver the full model is still a fair way off. The automated delivery system is not so far off. It fits the four level of automated driving systems by being in a geofenced area (local delivery only from a small storage/transfer facility), and carried out at low speed to reduce the risk of accidents. Full level 5 driving automation where vehicles can go anywhere in all conditions and no driver actions required are a lot further off. That does not mean there will not be continuing experiments with automated food delivery systems.

As Ben Thompson states in his article groceries are about 20% of consumer spending (USA). That is a big prize and lots of people are going to be going after it. Long term an automated vehicle delivery system will be a part of that. How big a part, and in what form remains to be seen.

 

I am writing a book on the adoption of driverless cars with Chris Rice entitled Rise of the Autobots: How driverless vehicles will transform our societies and our economies. Follow me here or on Twitter for more updates as we write and publish.

Paul Higgins

 

 

 

Augmentation of Human Capacity

On Friday I did the opening keynote for the Mindshop Australia conference. The title was “Bringing the Future into your Advisory Practice”. The focus was on ways of creating more value for the clients of advisors in the network. After the session there was much discussion from participants on the nature of work and the sorts of jobs that they should encourage their children to be aiming for.

My response to those questions was to use examples to highlight principles rather than recommend specific jobs because jobs will change. I used the example of the health sector and new AI developments in my presentation as well as in the discussions afterwards. For example:

Self-taught artificial intelligence beats doctors at predicting heart attacks

stylised heart image from sciencemag

On the weekend I was then reading Stowe Boyd’s  10 work skills for the postnormal era and I was struck by the statement on “Freestyling” from Tyler Cohen:

“When humans team up with computers to play chess, the humans who do best are not necessarily the strongest players. They’re the ones who are modest, and who know when to listen to the computer. Often, what the human adds is knowledge of when the computer needs to look more deeply”

This married up with the response I was giving to participants at the conference. The use of AI systems to augment the capacities of humans  does not augment everyone equally. In the world of medical specialists it is a commonly held view among patients that they will put up with specialists with poor social skills or high prices because of the knowledge they hold (putting aside the issues of the professions restricting supply to keep prices high).

If that knowledge moves largely to the realm of artificial intelligence then this re-weights the value of the medical specialist. If the machine can do things the individual or team cannot possibly do by being able to access more knowledge and make more connections in that knowledge than is humanly possible then it changes the system. Knowledge becomes less important and skills such as the capacity to work with the AI, patient empathy and general social skills become more important.

Augmentation  of human cognitive capacities will do that across sectors and industries.

 

The Future for Accountants

The story for accountants the last few years has been increasing levels of outsourcing tasks to low wage environments such as India, and increasing levels of automation for their tasks and their clients. The early stage of that process has been the automation in accounting software systems such as QuickBooks and Mint. Increasingly this automation will move into more and more of the accounting space including real time artificial intelligence auditing systems, automatic preparation of increasing complex tax returns, and structuring credit arrangements.

These things generally start out small and at the less complex end of things and accelerate into more complex areas before people realise it has happened.

So where is the new value for accountants. Primarily this has to be in the process of value creation for clients. Therefore accountants need to move up the value chain and Examples include:

1/ Transformation of business processes around technology changes and the re-training of staff for their SME clients.

As I wrote in Questions on the Future of Work a recent McKinsey report has stated that

According to our analysis, fewer than 5 percent of occupations can be entirely automated using current technology. However, about 60 percent of occupations could have 30 percent or more of their constituent activities automated”

This supports the notion that apart from a few isolated cases (e.g. truck drivers with driverless trucks) technology does not replace jobs but replaces particular skills or tasks. More importantly business processes and the ways in which we serve customers are changed by the introduction of various forms of artificial intelligence into technologies. This can be a customised approach for vendors like Salesforce Einstein which is adding AI services to its sales, and customer service offerings at around US$50 to US$75 per user per month. Or it can be more fundamental changes to value propositions and business models and the underlying capabilities required to deliver them.

Either way we appear to be entering an era where the jobs people will do will change even more rapidly than they have over the last 10 years and will constantly change rather than be part of a single change management process. In my experience most organisations with under 1,000 employees have little idea on how to approach this problem. This is a huge opportunity for accountants who already have close contact with their clients.

2/ Assisting clients with understanding their strategic landscape

In a world that is moving faster and changing more rapidly than ever before operators of SME businesses are facing greater uncertainty than ever before. They are also facing a paradox. The pressure on them means that they must spend more time focusing on the operational matters in their business but they are doing so right at the time that looking around to see what is happening becomes more important. Just last week I was working with an SME business that is very well run and focused on all the right things that need to be done for the next 12 months. At the same time they were not thinking very deeply about the future and that their decisions (that were absolutely correct in a short term sense) might mean for their long term future.

This means that there is great value for an independent adviser that sees a wide range of other businesses and can:

  • Provide a better strategic understanding of the industry in which the client business operates. Examples include looking at possible industry scenarios for 5 years time and trying to understand what the interim competitive position might be.
  • Cross pollinate ideas and ways of doing things from other businesses in other business sectors. Sometimes very simple tools and approaches from somewhere else can significantly improve a businesses bottom line.
  • Look at the business from a dispassionate but involved perspective and ask questions the business is not asking itself. Examples might include – does your logical short term investment in cost improvements weaken your balance sheet and capacity to respond to x/y or z which are significant risks?  OR What custom built systems are you using which can be supplied via industry standard products or new utility services.
  • Run a structured red team/blue team process to attacking and defending the business from an outside perspective.

 

3/ In the future: utilisation of AI to augment their own capabilities

The reality of artificial intelligence is narrow expertise systems rather than a general intelligence. So we will see artificial intelligence systems that can aid sales people and customer service people but cannot do other things (see Einstein above). We will see narrow artificial intelligence systems that can assist doctors but not do much else. The list goes on.

The modern approach to artificial intelligence systems is basically on of machine learning which requires large training data sets and a large market to justify to expenditure on development and training. Therefore we will see AI systems developing in markets where there are either a lot of customers, or high margin customers, or both. Given how many accounting practices there are around the world the accountancy business is one that is ripe for such a development.

Veterinary Schools as a Platform (VSaaP)

Late last year we worked with the Australian Veterinary Board Council and the Deans of all the Veterinary Schools in Australia and New Zealand looking at what the future of veterinary education and regulation might look like in 2031.  The date was chosen to be the time when a 12 year old just starting secondary school now would be a graduate of 2-3 years standing. We looked at a whole range of issues including availability of smart phone based diagnostic kits for pet owners, artificial intelligence systems for diagnosis, urban densification and its effects on pet ownership, veterinary practice corporatisation, international trade requirements, and the need for wide or narrow scope veterinary degrees.

One of the ideas that emerged from the process has stuck in my head and I think has great scope to revolutionise how we provide a much wider range of education at universities and for education post graduation.

Essentially the is one where  the veterinary school acts as the primary site of education for those subject areas that need face to face contact and technical expertise that cannot be achieved in an online, video, or virtual reality environment.

All other subjects/modules are accessed by the students via the school platform and the teaching material and processes that form the basis of those modules can be supplied by any accredited service across the globe. The model looks like the following diagram if we just look at one module, in this case cat medicine at the vet school at the University of Melbourne:

Vet school as a platform image

On the supply side of the platform (above the line in the diagram) cat medicine courses are supplied by all the possible services globally that wish to provide that service and who are able to meet the curriculum needs.  The platform would be agnostic on delivery systems as long as outcomes where met.

On the demand side (below the line in this diagram) each student in this model can choose who their supplier of education in cat medicine is. In the picture above Isabelle has chosen Sydney University because they have a great reputation but also provide face to face services at the school in Melbourne. Ivy and Anne have chosen Seoul National University because they have a great reputation and their virtual reality applications suit their learning style and they have been offered lifetime professional development at a low cost as part of  the deal.

The school accredits multiple providers from interstate and/or overseas for each module (the school itself can provide modules in competition with these modules if it desires). Students can choose the best provider for the module or subject they wish to complete.

Competition on the platform fosters innovation in teaching content, support and methodologies that best meet the student’s needs.

Collaboration may occur between schools with centres of excellence formed to compete with international providers. E.g. Sydney University could be the cat medicine centre of excellence that allows economies of scale to be achieve on content creation and methodologies (for example virtual reality technology is still quite expensive but spread over 1000 students the costs come down).

Uncertainty about the future education and information needs is dealt with by the system working as “plug and play” with new subject matter being able to be added as flexibly as possible, and many providers producing a much larger resource base. This should allow more rapid adoption of new content as the world changes (e.g. big data systems/network facilitation for clients with home diagnostic tests).

On top of the pre-registration process it could also be used for post registration professional development with or without limited degrees. Currently vets have to learn and qualify across a massive range of animal species but many go into small animal practice and never see a cow, sheep, or pig again. Shorter narrow species based degrees could be supplemented by post graduation systems that allow vets to qualify in other areas if they wish to change careers or specialties.

By taking advantage of education technologies to improve the efficiency and quality of education a school as a platform system. There are multiple advantages to this beyond what has been discussed above:

  • The time and costs of delivering some content can be reduced.
  • Greater value can be created in other areas by increasing the time and resources applied to the teaching of those areas.
  • Self paced degree systems could be put in place where the pace of learning is determined by the student rather than the needs of the lecturers or the school.

Regulatory/Accreditation issues could be relatively straightforward if the existing schools are accredited and the content partners are required to meet content and/or competency based assessments. Combined with limited degrees, intern models, etc. the issues can become quite complex. The accreditation process itself may need to become more flexible and capable of responding faster to changes in technology.

Technology in delivery of course and maximising flexibility in systems is rapidly advancing. For example the University of Texas has a major collaborative project going on with Salesforce:

UT System partners with tech industry leader to develop next-generation learning platform

The future is coming faster than we think and it has the potential to radically change education models.