Leadership in a Post-Capitalist (???) World

On Wednesday night I gave the opening address at Leadership Victoria on this topic. The audience was a group of 60 leaders across a range of organisations in Victoria. The question focused around some articles from Steve Denning, Jeremy Rifkin, and Paul Mason (see links at the end of this post). My purpose was to frame the rest of the discussion for the night, and highlight some possibilities about key leadership skills for the future.

As the background articles are now 2-3 years old it is an ideal time look at what has happened in the interim. The thrust of Paul Mason’s writing was that new tools were in the early stages of ushering in a new economic system. These changes included collaborative production, reducing information scarcity, and automation of work . Steven Denning was more circumspect about what was happening. While in broad agreement with some of the principles Paul was espousing, he had differing views on their effects and implications. Denning believed that it was a new era of capitalism rather than post capitalism. Jeremy Rifkin examined the implications of areas of the economy where the marginal cost of production is almost zero. In doing so he was more in agreement with Denning than Mason, while arguing that the collaborative commons was having a significant effect.

To clearly show my biases before I argued my proposition I put up the following quote from Amory Lovins:


“The markets make a good servant, but a bad master, and a worse religion”


because while it would appear I am arguing for hyper-competition, the outcomes need to be focused on how the system benefits the general population in our societies.


The Proposition

 I began my presentation, as is my wont, by arguing against the proposition of the title of the session. My view is that we are not entering a post capitalist world, but rather a real capitalist world. The technologies discussed in the articles are changing the way the world works. In doing so they are moving us towards real capitalism rather than the monopoly seeking, and rent seeking behaviours of the past. For the purposes of this discussion I defined real capitalism as:

“hyper-competition within the boundaries of a socio-regulatory system that steers the benefits to the general population rather than the few”

The reality is that true competition is hard, and so companies try to position themselves in protected positions . I have just been reading Kerry O’brien’s book on Paul Keating. In the chapter which deals with privatisation, Keating describes the Qantas and TAA privatisation process.  Peter Abeles who was part owner and CEO of Ansett Transport Industries but also a good friend of Prime Minister Bob Hawke was deeply involved. According to Keating the privatisation discussions were frequently attended by Peter Abeles who was interested in keeping a cosy duopoly. Keating states that this was because although Abeles thought they could compete with a restructured and privatised government airline, it was better if they did not have to.

This was the main purpose of strategic frameworks such as Porter’s Five Forces: position yourself where you had a strong position relative to suppliers, existing competitors, customers, and new entrants. True competition, where there is a relentless focus on the customer, continual innovation, and where new entrants can appear from anywhere is a highly uncomfortable environment. Therefore, companies and people have to have true competition forced upon them. This is fair enough, you would be stupid to force additional competition upon yourself (in the short term). This is partly the role of government and society in terms of the rules and norms that govern how things should work. The new tools and capabilities that the articles described are contributing additional forces.

Part of the arguments of the authors of the background articles was that increasing connectivity, improved collaboration tools, and wider access to information was increasing the capacity of the smaller players to compete with the bigger players. My proposition is that is true, but that but power is again accruing to the larger players. The combination is creating a world of hyper-competition. Let’s look at what some of the evidence says:

In 2011 I presented to a number of tourism conferences about Airbnb. At that stage it had been running for 3 years. I was continually surprised at the lack of knowledge about it in the tourism industry. The promise of Airbnb is that individuals can gain value from their existing assets, increasing the power of the individual. Putting aside some of the more outrageous events in rented out properties Airbnb has mostly delivered on that promise.

Yet, in these sorts of large platform business models power naturally moves back to the centre. Once there are enough buyers and sellers on the platform, it is hard for others to compete with the model because of network effects. The sellers are in hyper-competition with all the other sellers, hence it is a good example of a hypercompetitive world. It is a large market with transparent pricing.

In the more egregious cases of platform models we are seeing big problems. Uber stands out as a major example. Uber has serious internal problems which I think stem from excessive power issues. There are also lots of stories of low paid drivers, and conflicts about their status as employees or contractors. There is definitely a power imbalance with power accruing to the centre of the network.


Now lets look at the music industry which really should be a poster child for the sorts of changes the authors were describing. We have seen increased capacity to create and distribute music from musicians to their audiences. We have also seen marginal costs approaching zero with the creation of digital media. So what has happened? The following pictures from Digital Music News via Vox show some of the changes:

music sales 1998 from Vox


music sales 2013 from Vox

Digital technologies have transformed the way music is sold and consumed. Now streaming services have changed that again, as shown by the following graphic from Business Insider

streaming music from business insider and statista

all of this has resulted in the following revenue changes (via Benedict Evans)

global music recorded revenues from IFPI Benedict Evans

Buried in all this is the fact that Spotify is dominating the market for streaming services, with Apple a strong but distant second. Spotify’s revenue, according to Billboard is now over US$3 billion but it also lost US$581 million on those revenues.  So again we are seeing power accruing to the big players and many complaints from artists.


Hunter S Thompson once said:

“The music business is a cruel and shallow money trench, a long plastic hallway where thieves and pimps run free, and good men die like dogs. There’s also a negative side.”

I am not sure much has changed.


We are also seeing other examples of power accruing to the big organisations:


  • From 2001 to 2011 Walmart grew from 1.15million employees to 2.2 million employees.


  • Amazon is showing huge growth, and is now sending shudders through the retail food industry with its acquisition Whole Foods.




So my basic proposition is that:

  • The tools and changes described by the authors are not taking us into a Post Capitalist world. They are taking us into a true capitalist world. hyper-competitive world.


  • While small organisations and individuals now tools that make them more productive, and more able to connect to everyone else, power is still accruing to the large players.


  • The combination of those changes mean a changed way of doing things but only inside a world of hyper-competition.


So within my view of the world what are some key skills that people need to be leaders? I have chose four skills, that is by no means comprehensive:

Situational awareness

In a world where there are many more interconnected and moving parts, then we need better strategic understanding. What I mean by situational awareness is a detailed understanding of the various components of your sector or industry . It also encompasses a clear eyed view of where those components may be changing. Two of the models that we use for thinking about these things are Carlota Perez’s work on Technological Revolutions and Financial Capital, and Simon Wardley’s work on mapping.

Perez’s view is that there are clearly identifiable 50-60 year cycles of technological, financial and social change. Thinking about where we are in the current cycle can help us understand more about what strategic decisions we should be taking. These cycles run from technological revolution to a financial bubble, to collapse, to a golden age and then to political collapse. The five that she identifies are The Age of the Industrial Revolution, The Age of Steam and Railways, The Age of Steel and Electricity, The Age of Oil and Mass Production, and The Information Age.

Simon Wardley takes a more granular view while stil looking at cycles and movement. Simon posits that all technologies and practices move from their original genesis, then to custom built, then to product, and finally to utility or commodity. While this is a gross oversimplification of his work, understanding where each part of your value chain is is located within a map of this framework, and where it may be headed allows you to better understand where significant change may occur. He is writing a book on the subject and all the chapters are on Medium. I highly recommend you go read them.




I mean scepticism in its best possible meaning: questioning assumptions and evidence. This skill is vital when thinking about models. This is because all models are incomplete and inadequate representations of the real world . They are more useful when viewed with a sceptical eye. I can best express this in the statement:

Strong Views Weakly Held

For example if we look at Carlota Perez’s work it is clear that the cycles she has described are social constructs. Each occurred under a different set of political, technological and social  systems. It is also clear that 4 or 5 cycles, even if taken as true, are not a clear body of evidence of some sort of immutable laws in human society over time. So use models, think deeply about them but always with a sceptical eye.


The capacity to deal with uncertainty

The reality of the modern world is high levels of uncertainty. In my work I experience clients seeking to find certainty in the midst of uncertainty. An example is people trying to create scenarios in spreadsheets with probabilities attached to them. These sorts of reductionist approaches reduce the capacity of organisations and individuals to take effective action. They create an inherent disconnect between the organisations’ strategy and the real world they operate in.

While the scepticism I have described above is to some extent focused on making sure that we don’t take models as gospel, the capacity to deal with uncertainty is somewhat different.

The critical leadership skill here is the balance between acknowledging and working with uncertainty, while instilling confidence, purpose, and direction in the people around you. Different people have different needs in this regard. Some people want to dive into the uncertainty. Others just want to get on with the job. In a previous session with a Leadership Victoria year group there was vigorous debate on this issue. The room split down the middle. Half the room believed that it was their job to deal with the uncertainty. The other half believed that exploring the uncertainty with their staff was a critical responsibility.


The capacity to coach and stimulate networks

Networks and collaboration are a reality now in many organisations. The day of the strong visionary leader is ending, and the ability to lead and stimulate networks is critical. This applies both inside organisations and in collaborations between organisations.



I finished my presentation by analysing my relative strengths in those skills. I am pretty good at the situational awareness, and scepticism skills. I am less able in the dealing with uncertainty area, although better at work than in my private life. I am poor to average in network leadership skills. My main reason for that assessment is that the world has changed enormously in the last fifteen years. In that time I have been focusedon foresight and situational awareness when working with clients. It is a long time since I led an organisation on a day to day basis and network leadership skills in particular need deep and continual practice. The same applies to situational awareness and scepticism but I have been practicing those.


Paul Higgins


Background reading links for the participants:

The end of capitalism has begun

The End of the Capitalist Era, and What Comes Next

Is Capitalism Ending?



An Initial Model for Autonomous Trucks in Australia?

Updated with long distance vehicle announcements


A recent announcement in the United Kingdom has the government allocating 8.1 million pounds to a truck platooning trial:

Semi-automated truck convoys get green light for UK trials

Platooning is essentially like bicycle pelotons in road races like the Tour de France, where riders get sucked along in the slipstream. Until you have actually participated in one, you do not realise how much easier it is to ride in the group. I knew that intellectually, but the experience is something else. For trucks this means less congestion and less fuel use. In order to achieve these results the artificial intelligence and sensing systems that controls the trucks have to be much better than human drivers so that the trucks can drive closer together.  In the UK trial the speeds and steering will be controlled by the lead vehicle.

Total autonomy for vehicles on the road is known in the industry as Level 5 autonomy. This is where vehicles can control themselves in all road conditions. We are a long away from this technologically, so the trucks in the trials will have human drivers who can take the wheel at any time. The problem with this is that driver attention will naturally wane and this may impact on reaction time. In this trial this may be dealt with by periodic blocks of time where the human driver must take command of the truck – whether there is a need or not.

The medium term adoption pathway here in Australia may be different due to the road conditions and distances travelled. Here in Australia the situation for truck driving is a little different than the UK. There are much larger travel distances between the major cities, and the major inter-capital highways are less crowded. This is mirrored in the United States, especially in larger states such as Texas and California. This means that the adoption process of the technology may be significantly different.

There are a couple of technology issues in the adoption pathway that is chosen that flow into these sorts of differences and how we might choose to adopt the technologies.

Firstly there is a significant debate in the autonomous vehicle technology world about the approach of using maps versus continuous sensing. As humans we can navigate an unfamiliar terrain because our sensing and vision systems are good enough to recognise and continually process information at a level that is useful. The technology in autonomous vehicles is still not good enough to achieve that yet, and this is where mapping comes in. If an autonomous vehicle has stored in its system a map of the territory it is about to navigate, it only has to compare the environment it is encountering versus the map. This significantly reduces the job that needs to be done, reducing the pressure on the technology. In the long run it is likely that onboard vision and sense making systems will be good enough to do without maps. In the short term  having maps significantly improves performance. The timing of these changes, and the implications for strategic competitive advantage are critical when thinking about strategic decisions for individual companies, and what the overall outcomes might look like (see: Winner-takes all effects in autonomous cars for an excellent discussion on this).

Secondly, at what point will we be comfortable with no driver in the vehicle, and will this be at Level 4 or Level 5 autonomy. At Level 4 autonomy the vehicle can drive itself but is limited either by geography or conditions. This means that while the driver can be removed there needs to be some sort of geofencing, or emergency failsafe systems. For example trucks on the highway may automatically pull over if rain levels go beyond a certain level, affecting visibility. If adoption pathways can be achieved at level 4 rather than level 5 then adoption will occur more rapidly as the technology will not have to be as advanced to achieve the outcome.

So if we can build a model in a specific area of trucking where there are less complicated driving challenges, and mapping  makes a significant contribution we can create faster adoption. Which takes us back to the highways between capital cities in Australia.

In Australia 18-19% of total road freight movements are inter-capital freight movements (Truck Industry Fleet Report 2015), and there has been significant improvement in those roads over the last 20 years. For example once we get outside of the major urban areas of Melbourne and  Sydney the road between the two cities is excellent for trucks. An early adoption model for autonomous truck movements in Australia might start with transfers between Melbourne and Sydney and look like the following:

  1. Autonomous trucks operating the full distance between the two cities except for the last 30 kilometres (plus or minus) in each city.
  2. A truck changeover system on the outskirts of both cities where either the truck takes on a driver, or the prime mover is changed over to a non autonomous prime mover and driver. This is necessary in an early adoption model because the challenges of driving in the major cities are significantly higher than on the open highway.
  3. A cooperative mapping effort coordinated by the Federal Government where the road is mapped in its entirety.
  4. The formal mapping is supplemented by all autonomous trucks contributing their mapping and sensing data to a central system to continually update the maps. Therefore any new hazards or changes such as roadworks are rapidly incorporated into the maps that all autonomous trucks use.
  5. Autonomous truck support centres where the control of the truck can be taken over by a remote driver in the case of difficulties such as problems with sensors, or road conditions which are outside of specified parameters.

Many of the pieces of such an implementation pathway are already in place or soon will be. Autonomous trucks have been trialled in several locations around the world, and we already have remote control of mining systems (Mining industry looks towards a new wave of automation ,  Rio Tinto: rolling out the world’s first fully driverless mines ). We also have remote control of drones for military operations.

Around the world the trucking industry is seeing problems with an ageing workforce, with trucking jobs being seen as unattractive by younger generations (Wheels not in motion: Australia running short of truckies). A system as described above can solve some of this problem by:

  1. Autonomous trucks can operate for more hours than human drivers can, increasing efficiency of truck use and reducing overall demand for drivers.
  2. Increasing the attractiveness of trucking jobs. In many cases the long hours and time away from home are significant factors reducing the attractiveness of driving a truck. If the long distances can be handled by autonomous trucks, and the drivers can go home to their families at night then the job becomes more attractive.
  3. A truck driving job is more interesting, as the easy parts are taken over by autonomous trucks, and the more difficult driving conditions, unloading operations, and interactions with customers are covered by human drivers in short haul operations.

Eventually most trucking operations will be carried out by autonomous trucks If we want to address the shortage of current workers, reduce fuel consumption for long haul freight, and possibly reduce fatigue related accidents, a model which accelerates early adoption should be trialled.


Proterra has announced an 1100 mile (1772.2km) trip of its Catalyst Bus on a single charge. (Proterra Counters Tesla’s ‘Beast’ Of A Semi With 1,100-Mile Range Electric Bus). In addition Tesla will announce its new Semi truck in October. With distances between Melbourne and Sydney of approximately 865 km, Sydney to Brisbane of 928 km, and Melbourne to Adelaide of 725 km this seems to put the intercapital freight market in the sights of autonomous electric trucks.

I am writing a book on autonomous vehicles with Dr Chris Rice of the University of Texas Austin. It is called Rise of the Autobots: How Driverless Vehicles will Transform our Economies and our Communities. Stay tuned for more excerpts as we finalise the book.


Note: The featured image comes from: http://qz.com/656104/a-fleet-of-trucks-just-drove-themselves-across-europe/ 










What Jobs Will Stay?

This week I had two very different experiences which had me thinking about the future of jobs. On Tuesday I was invited to a workshop host by Perpetual Trustees with the Stanford Centre for Philanthropy and Civil Society. I was there isn my role as a futurist and a venture philanthropist (I am a partner at Social Venture Partners Melbourne  See :  Summary Video). The subject for the session was Digital Technologies and Democratic Theory and involved a range of not for profit organisations, commercial businesses, and startups.

A lot of the discussion was on the effects of technology on our wider society, and our political systems in particular. Rob Reich and Lucy Bernholz from Stanford took the temperature of the room on whether we are optimists or pessimists about the effects and capabilities of technology. I was surprised by the fact that the overwhelming majority of the room was optimistic. I placed myself as pessimistic. I think that there is a lot to like about the capabilities of technology to connect people together, and for people to take action. I just think that the reality is a little more sobering, and that the effects of technology on our wider societies, in particular the future of work, will outpace the capacity of the technologies to bend the overall direction to the benefit of all.

While I am no means certain I fear a future where more jobs are eliminated than are created for the first time in our technological development. If such a change occurs it has the potential for both good and bad. The negative picture is one where more and more wealth accumulates in the hands of the few and is not distributed across the general population. That is a recipe for revolution. This is particularly troubling where public trust in our democratic institutions has fallen significantly.

driveway gate 1

My other experience is that we hired a handyman to move a gate in our driveway. For some reason I cannot understand the previous owners placed a gate part way down the driveway leaving a whole lot of unused space behind it. On top of that there are significant parking restrictions on our very steep street and so visitors have to park down the hill and walk up. This is getting to be a particularly serious issue as our parents age.

The original installation of the gate had not been particularly professional and so there were problems opening and closing the gate due to warping of the wood. When we got down to the details of the job we discovered that about 13 different types of bolts and screws had been used in the original gate installation. On top of that some were metric, and some were imperial (inches) and some seemed in between. On top of that some of the screws had been rounded out and were impossible to remove by standard methods. The problem was exacerbated by the fact that the concrete at the new position we were looking to install the gate on had three different levels.

Luckily we had hired an old time craftsman/handyman who had all the tricks and now the gate is safely installed (see picture). The dog has no chance of getting out, and our parents can now park in the driveway. Those are the sorts of jobs that are not going away in a hurry because of the levels of variation for each job. Our handyman (also Paul) says he reckons he has 20 years of work ahead of him in his semi-retirement. I think he is right and if you are concerned about the future employment of your children and they have aptitude for this sort of work (which includes plumbing) then keep encouraging them.

I realise that these two subjects are different ends of the same issue and the second one has no real bearing on the wider societal issues. I will keep trying to make a contribution to those wider issues.


Paul Higgins

Augmentation of Human Capacity

On Friday I did the opening keynote for the Mindshop Australia conference. The title was “Bringing the Future into your Advisory Practice”. The focus was on ways of creating more value for the clients of advisors in the network. After the session there was much discussion from participants on the nature of work and the sorts of jobs that they should encourage their children to be aiming for.

My response to those questions was to use examples to highlight principles rather than recommend specific jobs because jobs will change. I used the example of the health sector and new AI developments in my presentation as well as in the discussions afterwards. For example:

Self-taught artificial intelligence beats doctors at predicting heart attacks

stylised heart image from sciencemag

On the weekend I was then reading Stowe Boyd’s  10 work skills for the postnormal era and I was struck by the statement on “Freestyling” from Tyler Cohen:

“When humans team up with computers to play chess, the humans who do best are not necessarily the strongest players. They’re the ones who are modest, and who know when to listen to the computer. Often, what the human adds is knowledge of when the computer needs to look more deeply”

This married up with the response I was giving to participants at the conference. The use of AI systems to augment the capacities of humans  does not augment everyone equally. In the world of medical specialists it is a commonly held view among patients that they will put up with specialists with poor social skills or high prices because of the knowledge they hold (putting aside the issues of the professions restricting supply to keep prices high).

If that knowledge moves largely to the realm of artificial intelligence then this re-weights the value of the medical specialist. If the machine can do things the individual or team cannot possibly do by being able to access more knowledge and make more connections in that knowledge than is humanly possible then it changes the system. Knowledge becomes less important and skills such as the capacity to work with the AI, patient empathy and general social skills become more important.

Augmentation  of human cognitive capacities will do that across sectors and industries.


Questions on the Future of Work

Mckinsey has released a long awaited (by me anyway) report on the future of work entitled A Future that Works: Automation, Employment, and Productivity. It is a very interesting look at the technologies which are affecting the future of human work. Every business and organisation should read it in full.

Mckinsey takes a distinctly different approach than the much discussed Frey and Osbourne Oxford report on the susceptibility of jobs to computerisation.

This difference can be best seen in the following graphic from the report:


Instead of looking at what jobs might be replaced the team at Mckinsey have examined all the activities that each job in the USA job market entails and then looked at the various capabilities for each of those activities. They have then mapped those activities against the possible timelines of those activities being able to be performed by technology.

This is important because except for very limited cases technology replaces activities rather than whole jobs.

From this approach Mckinsey have created various forecasts for both the types of activities and the sectors of the economy as shown in the next graphic which shows their view about the ability to automate those activities.


Taken in aggregate their predictions are shown in the next graphic which I have annotated


RED: Their median forecast that 50% of all current activities will be replaced by 2055

BLACK: The rapid adoption forecast that 50% of all activities will be replaced by 2035 (only 18 years away)

GREEN – The extrapolation of the rapid adoption forecast from 2035 that shows that over 90% of current activities will be replaced by 2055.

Mckinsey also states that:

 “According to our analysis, fewer than 5 percent of occupations can be entirely automated using current technology. However, about 60 percent of occupations could have 30 percent or more of their constituent activities automated”

Apart from praising Mckinsey (which I do not normally do) for creating such detailed and interesting work, and also in highlighting the inherent uncertainty in any forecast, this raises several interesting questions in terms of impacts and change.


From an organisational perspective those questions include::

  1. Setting aside the changes the technology makes to our business models and speed of doing business if 20-50% of activities are going to be replaced over the next 18 years how are we going to lead our people through the continual change that is going to be required? If the average is 50% then many people will have far more of their activities replaced.
  2. If technology takes over more and more of non-routine activities in our organisation what are the skills we are going to need?
  3. If technology pushes people out of the lower skilled activities in the whole economy how many people in the whole community are capable of carrying out the higher skilled activities we will need our people to concentrate on? Will we be in an even fiercer fight to recruit the people we need?

An article in the New York Times on January 30th 2017 describes When the German engineering company Siemens Energy opened a gas turbine production plant in Charlotte, North Carolina:

some 10,000 people showed up at a job fair for 800 positions. But fewer than 15 percent of the applicants were able to pass a reading, writing and math screening test geared toward a ninth-grade education

Eric Spiegel, who recently retired as president and chief executive of Siemens U.S.A. said “People on the plant floor need to be much more skilled than they were in the past. There are no jobs for high school graduates at Siemens today.”

From a societal point of view this raises questions of:

  1. Are we heading into a period of increasing structural unemployment?
  2. How will we design an education/learning system which gives your young people the skills they need to work in the changed economy and our post school/university people the capacity to re-skill?
  3. If education is changing to be more focused on re-skilling people for jobs how do we still supply the wider general benefits of education?

Part of the answer to the second question is contained in the New York Times article where it describes the companies getting heavily involved in educating and training people with guaranteed jobs at the end of the cycle, and just as importantly no student loan debt. This was mirrored in my conversation in a trip to Austin Texas last year. Austin is growing at an enormous rate and part of the reason is that some of the major tech companies have realised that if they do not get involved with students before they graduate they may never get to hire them. So they are moving major parts of their operations closer to the Universities with strong reputations in the skills they need. University of Texas Austin happens to be one of those. Students are becoming heavily involved and supported by the companies.

When I work with clients on these issues they should be focused on the effects on their business or their organisation but the conversation always turns to the wider implications for society.

The techno-optimist argument is that technology has been destroying human jobs for hundreds of years and we have always created new ones. That is partly because we have created new capabilities that need people, but also because we have reduced the costs of inputs to make otherwise uneconomic business models viable. Mckinsey argues in their report that their median forecast results in job losses that have already been experienced in society as we reduced the human employment levels in agriculture, and then again in manufacturing. This is true if the pace remains the same.

On top of that they argue that the productivity improvements are required because we are losing the huge contribution that population growth rates have contributed to economic growth over the last 100 years. That is a good argument.

It is a brave futurist who says this time is different and it is completely plausible that the combination of new jobs being created, and the demographic change we are experiencing, particularly in developed economies will mean that we will still have close to full employment. It is also plausible that:

  • The pace of change will be at the rate that fulfills the rapid adoption scenario that Mckinsey has envisaged, increasing the rate of job losses above previous experience.
  • That as technology pushes people out of a whole range of human capability jobs we will find that a significant minority of people do not have the ability to carry out the jobs that are created.
  • That a significant group of people that have the abilities will be left behind because they cannot gain the skills required to harness those abilities.
  • That the combination of the two groups will either have to work for very low wages in order to not be replaced by technology or be permanently unemployed.

That is a recipe for societal unrest way beyond what we have seen in the rise of Donald Trump and Marie Le Pen. If the political response to the issues of the people that have expressed their frustration at the current system is to promise a greater share of the benefits of the economy and a genuine attempt to do that is derailed because of technology changes we could be in for a very bumpy ride indeed.





Agriculture, Technology and Future Careers

Paul Presenting at Bendigo November 2015 Teachers Agriculture and Career Opportunities

A couple of weeks ago it was my privilege along with several other speakers to engage with a roomful of teachers to talk about future possible careers for their students in Agriculture based around technology. The overall message was that the future was very bright for those with the passion and sills in technology to have well paid and fulfilling careers in the regions.

You can access the presentation at :

Agriculture, Technology and Careers 

The key messages were:

  • That more and more value is going to be created through data and technology in agriculture. For example Merrill Lynch has released a report saying that the use of agricultural drones are projected to create 100,000 jobs and $82 billion in economic value over the next decade in America alone. This prediction n terms of where drones will be used is seen strikingly in the following graph:

drone predictions for agriculture in the USA

source: http://www.marketwatch.com/story/how-drones-will-drastically-transform-us-agriculture-in-one-chart-2015-11-17 

  • Because of this there is going to be a massive demand for people with the skills to create and supply services into agriculture.
  • That because many of these services can be supplied via the internet or via mobile phones there is both an opportunity and a risk. If we can build a capacity regionally then we can both defend ourselves against outside providers and provide services in other countries and regions.
  • That the skills will be a combination of technology, the capacity to collaborate, and the understanding of agricultural business models.
  • The skills are also transferrable. So for example if we want to maintain aged care services at the highest possible level in regional communities the capacity to use predictive data and healthcare data will be vital. Therefore developing the skills opens up far more career opportunities than just agriculture. On top of that our ability to maintain viable regional communities will be in part dependent on these skills and I would much rather have people in our communities supplying the services than money flowing out of the community to service providers elsewhere.
  • That we need three things. Passion, market and skills.  I think that it is obvious that there is a market but if you have a market and no skills you cannot provide the necessary services . And if you have skills and market but no passion you will burnout. Therefore we need to help equip those individuals with the passion to be involved with the skills to support that passion.

Following the day there was a significant increase in the number of teachers who saw possibilities for their students in agriculture.

I would like thank the Bendigo Tertiary Education Partnership  and Community Leadership Loddon Murray Inc,and especially Kerry Anderson for inviting me along.

I believe that there is huge potential in our regions for careers around technology and we need to grasp that opportunity now.

So Your Daughter Wants to be a Motor Mechanic

Myself and Christopher Rice (@ricetopher) have started writing a book on the life and work skills that a child entering their first year of high school right now will need in 15 or twenty years time. There is a lot of stuff around about the disruptive effects of technology (especially robotics and artificial intelligence) will have on work and the economy over the next twenty years but we wanted to focus on the conversations that parents are having with their teenage children about these things right now.

There are a large range of issues to consider and we will be posting examples of our thinking to this site over the next few months as we write.

As an example of this consider the situation where your sixteen year old daughter or granddaughter is considering becoming a motor mechanic. What advice would you give them.

queens auto mechanic female via nydaily news amd-audra-fordin-jpg


In order to train as a motor mechanic the individual concerned must think there are reasonable chances of good employment as well as having a passion for mechanical things. Due to the length of training you would want those prospects to be long term. The prospects for a motor mechanic in 15 years time are highly dependent on a range of interacting factors:

First of all it is clear that robotics and computer technologies have had their greatest impact on routine manual and cognitive (sense making/ intelligence) jobs that can be easily automated. Think robots in car manufacturing plants, online accounting packages, or websites that now sell all sorts of travel products and services.

Secondly it is now obvious that technology is now pushing into areas that have much higher requirements for intelligence and creativity and are less routine and therefore less easily automated. Examples include driverless cars, journalism (An NPR Reporter Raced A Machine To Write A News Story. Who Won?), specialised manufacturing (Cheaper Robots, Fewer Workers), and even senior management (Here’s How Managers Can Be Replaced by Software). Recently there was even a story about machine systems rapping (Machine learning algorithms can ‘bust a rhyme’ better than humans by 21%).

Thirdly it is in the interests of business to make most work more routine because this affects the balance of power between employers and workers and therefore costs. Routine jobs require less skills and therefore on average wage levels will be lower. If wage levels are high in routine jobs they are under more risk of being replaced by technology because the economic case is better.

Fourthly there is a risk of overall disruptive change in the industry you choose to work in.

So let’s look at that from the point of view of a teenage girl thinking of becoming a motor mechanic.

Cars have clearly become more complex over the last decade and are becoming travelling computers and software platforms as much as they are a form of transport. To the extent that John Deere and GM have recently asserted that you don’t own your vehicle, you only purchased the right to use it in order to protect their software(GM says you don’t own your car, you just license it). Tesla updates its cars via software releases over the internet.

Generally one would think that increasing complexity would mean that the skills of the mechanics would have to rise and therefore it would be a good job to have. However there are several factors pushing this in the opposite direction:

  • The software systems are so complex that the job of monitoring and managing them is being increasing taken over by automated machinery that is moving towards a plug and play model that both diagnoses and fixes the car without human involvement.
  • Being a motor mechanic for specific brand of cars is essentially working in a closed system. The cars are all manufactured to a specification that is well known and understood. This means that the system you are working in is much more open to standardisation.
  • Companies such as BMW are introducing augmented reality systems that are able to recognise the car they are looking at and supply instructions and videos and augmented overlays that assist mechanics in doing their work. With massive investment and development of augmented systems around the world for a multitude of uses it is likely that these systems will rapidly improve. These sorts of technologies are very useful but they tend to lend themselves to de-skilling the workforce. If a mechanic is able to follow detailed and useful instructions overlaid on to their field of vision then there is less need for training. Less training means lower skills and easier replacement by others. Both indicators of lower wages

In the longer term the advent of driverless cars will greatly affect the job of the mechanic. There are various views on the timelines for the full scale implementation of driverless car but we view it is inevitable and likely within 15-20 years.

Currently our cars are idle about 94% of their life. The full implementation of driverless cars will mean that a large percentage of cars will be used far more as they move from transport job to transport job as de facto public transport system. Therefore the standard car is likely to do 60-100,000 km a year instead of the current 15,000 km. It also makes sense as a business model for driverless cars to be less personalised than in the past as we move from ownership to rentership[1].. Therefore very large scale model runs of cars that have greater durability and can be easily and systematically maintained make more economic sense. We will probably design cars that have lifetimes of 500,000 km but will still only last 6-8 years.

That means that the processes of fast food franchises/manufacturing plants will be applied to car servicing. This will include modularised systems that can be robotically swapped in and out of cars on a production line, with other servicing carried out on the same line Therefore skilled mechanics will be less in demand and will be replaced by a sort of basic manufacturing job.

Therefore our view is that the future job of motor mechanic for your daughter or granddaughter is much less promising than it seems currently. We would recommend that you steer that mechanically minded teenager more towards the field of robotics and drones which show much more promise and likely demand, but more on that later.

We would welcome your comments and debate

Paul Higgins and Christopher Rice

[1] A term used for moving from a system where we own most things to a greater percentage of the physical products we access being rented rather than owned.